Среднее число ударов молнии. Молниезащита зданий и сооружений - характеристики грозовой деятельности и разрядов молнии. Грозовая активность в некоторых населенных пунктах Московской области

Д еревья нередко становятся мишенью для ударов молний, что подчас приводит к очень серьезным последствиям. Мы расскажем о том, какую опасность несет поражение молнией как для самих деревьев, так и для живущих рядом с ними людей, а также как можно снизить риски, связанные с этим явлением.

Куда бьет молния

Для значительной части территории Земли грозы – вполне обыденное явление. Одновременно над Землей бушует около полутора тысяч гроз. Ежегодно, например, в Москве наблюдается более 20 грозовых дней. Но несмотря на привычность этого природного явления, его мощь не может не потрясать. Напряжение тока средней молнии около 100 000 вольт, а сила тока 20 000–50 000 ампер. Температура канала молнии при этом достигает 25 000 – 30 000 °C. Неудивительно, что попадание молнии в строения, деревья или людей и распространение ее электрического заряда часто приводит к катастрофическим последствиям.

Хотя поражение молнией отдельно взятого наземного объекта, будь то здание, мачта или дерево, довольно редкое событие, колоссальная разрушительная сила делает грозы одним из наиболее опасных для человека природных явлений. Так, по статистике, каждый седьмой пожар в сельской местности начинается из-за удара молнии, по количеству вызванных природными бедствиями зарегистрированных смертельных случаев молнии занимают второе место, уступая только наводнениям.

Вероятность поражения наземных объектов (в том числе и деревьев) молнией зависит от нескольких факторов:

  • от интенсивности грозовой активности в регионе (связана с особенностями климата);
  • от высоты данного объекта (чем выше, тем вероятнее удар молнии);
  • от электрического сопротивления объекта и расположенных под ними слоев почвы (чем ниже электрическое сопротивление объекта и расположенных под ним слоев почвы, тем выше вероятность разряда в него молнии).

Из сказанного понятно, почему деревья часто становятся мишенью для молний: дерево нередко является преобладающим по высоте элементом рельефа, насыщенная влагой живая древесина, связанная с глубокими, обладающими низким электрическим сопротивлением слоями грунта, часто представляет собой неплохо заземленный естественный громоотвод.

Грозовая активность в некоторых населенных пунктах Московской области

Населенный пункт

Среднегодовая продолжительность гроз, часы

Удельная плотность ударов молний в 1 км²

Общая характеристика грозовой активности

Волоколамск

40–60

4

высокая

Истра

40–60

4

высокая

Новый Иерусалим

40–60

4

высокая

Павловский Посад

20–40

2

средняя

Москва

20–40

2

средняя

Кашира

20–40

2

средняя

Чем опасно поражение молнией дерева

Последствия удара молнии в дерево часто оказываются разрушительными как для него самого, так и для расположенных рядом строений, а также представляют значительную угрозу для людей, оказавшихся в этот момент поблизости. В момент прохождения мощного электрического заряда через древесину происходит мощное выделение тепла и взрывное испарение влаги внутри ствола. Результатом этого становятся повреждения разной тяжести: от поверхностных ожогов или трещин до полного расщепления ствола или возгорания дерева. В некоторых случаях внутри ствола возникают значительные механические повреждения (продольные трещины или расщепление древесины по годичным кольцам), практически незаметные при внешнем осмотре, но существенно увеличивающие риск падения дерева в ближайшем будущем. Нередко серьезные, но незаметные при визуальном осмотре повреждения могут получать и корни дерева.

В том случае, если повреждение молнией не приводит к мгновенному разрушению или гибели дерева, полученные им обширные травмы могут стать причиной развития опасных болезней, например гнилей, сосудистых заболеваний, ослабленное растение становится легкой добычей стволовых вредителей. В результате этого дерево может стать небезопасным или усохнуть.

Удары молнии в деревья (в том числе и живые) нередко вызывают пожары, которые переходят и на близлежащие строения. Иногда боковой разряд от дерева передается на стену здания, даже если на нем установлен молниеотвод. Наконец, электрический потенциал от пораженного дерева распространяется в поверхностных слоях грунта, в результате чего он может быть занесен в здание, повредить подземные коммуникации или привести к поражению электрическим током людей или домашних животных.

Удар молнии в дерево способен причинить значительный материальный ущерб даже в том случае, если аварийной ситуации при этом не возникло. Ведь оценка безопасности такого дерева, специальный уход за ним либо даже простое удаление засохшего или безнадежно больного дерева может быть связано со значительными материальными затратами.

Иногда боковой разряд от дерева передается на стену здания, даже если на нем установлен молниеотвод.

Проблемы нормативной базы

Таким образом, молниезащита особенно ценных деревьев (являющихся центром ландшафтных композиций, исторических и редких) или деревьев, произрастающих вблизи жилья, может быть практически оправданной. Однако нормативная база, предписывающая или регулирующая молниезащиту деревьев, в нашей стране полностью отсутствует. Такое положение дел является скорее следствием инертности отечественной нормативно-правовой базы, чем адекватной оценкой рисков, связанных с поражением молниями деревьев в урбанизированной среде.

Основной действующий отечественный стандарт по молниезащите датируется 1987 годом. Отношение к молниезащите в загородной местности в этом документе отражает реалии и позиции того времени: материальная ценность большинства загородных построек была невелика, а интересы государства фокусировались на защите общественной, а не частной собственности. Кроме того, составители отечественных стандартов исходили из предположения, что при строительстве загородного жилья соблюдаются строительные нормы и правила, но это не всегда так. В частности, минимальное расстояние от ствола дерева до стены здания должно быть не менее 5 м. В реалиях же загородного строительства дома часто располагают вплотную к деревьям. Причем владельцы таких деревьев, как правило, неохотно соглашаются на их удаление.

В других странах нормативы по молниезащите есть: например американский – ANSI A 300 Part 4 или британский – British Standard 6651 регулирует в том числе и молниезащиту деревьев.

Минимальное расстояние от ствола дерева до стены здания должно быть не менее 5 м.

Когда необходима защита?

В каких случаях имеет смысл задуматься о молниезащите дерева? Перечислим факторы, на основании которых может быть рекомендовано такое решение.

Дерево произрастает на открытой местности или заметно выше соседних деревьев, зданий, сооружений и элементов рельефа . Преобладающие по высоте объекты поражаются молниями чаще.

Район с высокой грозовой активностью. При высокой частоте гроз вероятность поражения деревьев (как и других объектов) возрастает. Основными характеристиками грозовой активности являюся среднегодовое число грозовых часов, а также средняя удельная плотность ударов молний в землю (среднегодовое число ударов молний на 1 км²) земной поверхности. Последний показатель используется для расчета ожидаемого числа поражений объекта (в том числе и дерева) молнией в год. Например, в случае района со средней продолжительностью грозовых часов 40–60 в год (в частности, некоторые районы Московской области) можно ожидать поражения дерева высотой 25 м один раз в 20 лет.

Расположение участка вблизи водоемов, подземных ключей, повышенная влажность почвы на участке . Такое расположение дополнительно увеличивает риск поражения дерева молнией.

Высокое дерево произрастает на расстоянии трех или менее метров от здания. Такое расположение дерева не влияет на вероятность попадания в него молнии. Однако поражение деревьев, расположенных вблизи строений, несет значительные угрозы как для самих строений, так и для находящихся в них людей. При этом повышается риск поражения здания боковым разрядом, очень велик риск повреждения кровли при падении дерева, при его возгорании пожар может распространиться на здание.

Ветви дерева нависают над кровлей здания, касаются его стен, козырьков, водостоков или декоративных элементов фасада . В этом случае также повышается риск повреждения здания, возгораний, переноса разряда на дом.

Дерево относится к породе, часто или регулярно поражаемой ударами молний . Деревья некоторых пород поражаются молниями чаще, чем другие. Наиболее часто поражаются молниями дубы.

Корни дерева, произрастающего рядом со зданием, могут контактировать с подземным фундаментом или подходящими к дому коммуникациями . В этом случае при поражении молнией дерева повышается вероятность «заноса» разряда в помещения или повреждения коммуникаций (например, датчиков системы полива и электросетей).

Специалисты по молниезащите зданий рекомендуют установку отдельно стоящегомолниеприемника, при этом на расстоянии от 3 до 10 м есть деревья, подходящие по высоте и другим параметрам для установки молниеприемника и токоотвода . Установка отдельной мачты может обойтись довольно дорого. Для многих владельцев загородных домов такие мачты также эстетически неприемлемы. И наконец, разместить мачту в лесной зоне таким образом, чтобы при ее строительстве не пострадали корни деревьев или растяжки не мешали перемещению людей, бывает очень не просто.

Подверженность поражению незащищенных деревьев некоторых пород
(из стандарта ANSI A 300, Part 4)

Принцип действия

Принцип действия системы молниезащиты состоит в том, что разряд молнии «перехватывается» молниеприемником, безопасно проводится токоотводом и передается в глубокие слои почвы при помощи заземления.

Компонентами системы молниезащиты дерева являются: молниеприемник (один или несколько), надземный токоотвод, подземный токоотвод и система заземления, состоящая из нескольких заземляющих стержней или пластин.

При разработке собственных схем молниезащиты мы столкнулись с необходимостью сочетания отечественных стандартов по молниезащите зданий и сооружений и западных стандартов, регулирующих молниезащиту деревьев. Необходимость такого сочетания связана с тем, что в действующих отечественных стандартах нет рекомендаций по установке систем молниезащиты на деревья, а более старые предписания включают инструкции, представляющие угрозу для здоровья дерева. В то же время американский стандарт ANSI A 300, содержащий подробную информацию о креплении системы на дереве и принципах ее установки и обслуживания предъявляет более низкие требования к электробезопасности системы по сравнению с отечественными нормативами.

Компоненты молниезащиты выполняются из меди или нержавеющей стали. При этом, во избежание коррозии, используется только один из выбранных материалов во всех соединениях и контактах между проводящими элементами. Однако при использовании меди допускается применение бронзовых элементов крепления. Медные компоненты дороже, но имеют большую проводимость, что позволяет уменьшить размер компонентов, сделать их менее заметными и сократить расходы на монтаж системы.

По статистике, каждый седьмой пожар в сельской местности начинается из-за удара молнии, по количеству вызванных природными бедствиями зарегистрированных смертельных случаев молнии занимают второе место, уступая только наводнениям.


Компоненты системы

Молниеприемник представляет собой замкнутую на конце металлическую трубку. Токоотвод входит внутрь молниеприемника и присоединяется к нему болтами.

Для деревьев с раскидистой кроной бывают необходимы дополнительны токоприемники, поскольку в этом случае разряд молнии может ударить в ветви или вершины, удаленные от молниеприемника. Если на дереве установлена система механической поддержки ветвей на основе металлических тросов, то при выполнении молниезащиты она также должна быть заземлена. Для этого при помощи болтового контакта к ней присоединяется дополнительный токоотвод. Следует учитывать, что прямой контакт меди с оцинкованным тросом недопустим, поскольку ведет к коррозии.

Токоотводы от молниеприемников и дополнительных контактов соединяются при помощи специальных зажимных контактов или болтовых соединений. В соответствии со стандартом ANSI A 300 для молниезащиты деревьев используются токоотводы в виде цельнометаллических стальных кабелей различного плетения. В соответствии с отечественными стандартами минимальное эффективное сечение токоотвода из меди – 16 мм², минимальный размер эффективного сечения токоотвода из стали – 50 мм. При проведении токоотводов по дереву необходимо избегать их резких изгибов. Недопустимы изгибы токоотводов под углом меньше 900, радиус кривизны изгиба не должен быть меньше 20 см.

Токоотводы присоединяются к стволу при помощи металлических зажимов, заглубляемых в древесину ствола на несколько сантиметров. Материал зажимов не должен приводить к контактной коррозии при соединении с токоотводом. Фиксировать токоотводы, привязывая их к дереву проволокой, нельзя, поскольку радиальный рост ствола приведет к возникновению кольцевых травм и усыханию дерева. Жесткая фиксация токоотводов на поверхности ствола (скобами) приведет к их врастанию в ствол, снижению долговечности и безопасности системы и развитию обширной стволовой гнили. Оптимальный вариант крепления системы – установка динамических зажимов. В этом случае при увеличении диаметра ствола держатели с кабелями автоматически поджимаются к концу стержня давлением тканей дерева. Отметим, что заглубление штифтов зажимов на несколько сантиметров в древесину и их последующая частичная инкапсуляция деревом практически не наносит ему никакого вреда.

Токоотводы спускаются вниз по стволу до его основания и заглубляются в траншею.

Минимальная глубина траншеи для подземной части токоотвода, предписываемая стандартом ANSI A 300, – 20 см. Копка траншеи проводится вручную с сохранением максимального числа корней. В тех случаях, когда повреждение корней особенно нежелательно, для устройства траншеи следует использовать специальное оборудование. Например, воздушный нож – компрессорный инструмент, предназначенный для выполнения земляных работ в приствольной зоне деревьев. Это устройство, используя сильный сфокусированный поток воздуха, способно удалить частицы грунта, не повреждая даже самых тонких корней дерева.

Тип и параметры заземляющего устройства и расстояние, на которое должен отходить до него токоотвод, определяются свойствами грунта. Это связано с необходимостью сократить до требуемого уровня импульсное сопротивление заземления – электрическое сопротивление растеканию импульса электрического тока от заземляющего электрода. По отечественным нормам в местах, регулярно посещаемых людьми, такое сопротивление не должно превышать 10 Ом. Данная величина сопротивления заземлению должна исключить искровые пробои тока от подземного токоотвода и заземлителя на поверхность почвы и, следовательно, предотвратить поражение людей, строений и коммуникаций электрическим током. Основной показатель грунта, определяющий выбор схемы заземления, – удельное сопротивление грунта – сопротивление между двумя гранями 1 м³ земли при прохождении по нему тока.

Чем выше удельное сопротивление грунта, тем более разветвленной должна быть система заземления, чтобы обеспечить безопасное стекание электрического заряда. На грунтах с небольшим удельным сопротивлением –до 300 Ом (суглинки, глины, заболоченная местность), – как правило, применяется система заземления из двух вертикальных заземляющих стержней, соединенных токоотводом. Между стержнями выдерживается расстояние не менее 5 м. Длина стержней 2,5–3 м, верхний конец стержня заглубляется на 0,5 м.

На грунтах с большими значениями удельного сопротивления (супеси, пески, гравий) используются многолучевые системы заземления. При ограничении возможной глубины залегания заземления применяются заземляющие пластины. Для удобства осмотров и тестирования надежности заземления над заземляющими элементами устанавливаются небольшие колодцы.

Удельное сопротивление грунта не постоянная величина, ее значение сильно зависит от влажности грунта. Поэтому в засушливое время года надежность заземления может снижаться. Для предотвращения этого используется несколько приемов. Во-первых, заземляющие стержни по возможности размещаются в зоне полива. Во-вторых, верхняя часть стержня заглубляется на 0,5 м ниже поверхности грунта (верхние 0,5 м грунта наиболее склонны к пересыханию). В-третьих, при необходимости в грунт добавляется бентонит – естественный влагоудерживающий компонент. Бентонит представляет собой мелкие коллоидные частицы минеральной глины, поровое пространство которых хорошо удерживает влагу и стабилизирует влажность грунта.

Насыщенная влагой живая древесина, связанная с глубокими, обладающими низким электрическим сопротивлением слоями грунта, часто представляет собой неплохо заземленный естественный громоотвод.

Распространенные ошибки

В отечественной практике молниезащита деревьев применяется редко, и в тех случаях, когда она все же производится, при ее устройстве совершается ряд серьезных ошибок. Так, в качестве молниеотводов, как правило, используются металлические прутки, закрепляемые на дереве при помощи проволоки или металлических обручей. Такой вариант крепления приводит к возникновению серьезных кольцевых травм ствола, которые со временем приводят к полному усыханию дерева. Определенную опасность представляет и врастание токоотвода в ствол дерева, приводящее к возникновению обширных открытых продольных ран на стволе.

Поскольку установка молниезащиты на деревья производится электромонтажниками, то для подъема на дерево ими обычно используются гафы (кошки) – ботинки с металлическими шипами, наносящие серьезные травмы дереву.

К сожалению, игнорируются и особенности кроны дерева: как правило, не учитывается необходимость установки нескольких молниеприемников на многовершинные деревья с широкими кронами, не учитываются также и структурные дефекты ветвления дерева, что нередко приводит к слому и падению вершины с установленным молниеприемником.

Молниезащиту деревьев нельзя назвать распространенной практикой. Показания к ее выполнению встречаются в районах с умеренной грозовой активностью достаточно редко. Тем не менее в тех случаях, когда молниезащита деревьев необходима, крайне важно ее правильное выполнение. Проектируя и устанавливая такие системы, важно учитывать не только надежность самого молниеотвода, но и безопасность системы для защищаемого дерева.

Итоговая надежность молниезащиты будет зависеть как от правильного выбора ее материалов, контактов и заземления, так и от устойчивости самого дерева. Только учитывая особенности структуры кроны, радиального прироста, расположения корневой системы дерева, можно создать надежную и не наносящую опасных травм дереву, а значит, не создающую лишних рисков для живущих рядом людей систему молниезащиты.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной химии и физики

Молниезащита зданий и сооружений

Учебно-методическое пособие

Рассматривается методика и техника расчета молниезащиты гражданских и промышленных объектов.

Пособие предназначено для проведения практического занятия либо самостоятельного выполнения расчетно-графической работы (РГР) по дисциплине «Безопасность жизнедеятельности» студентами всех форм обучения. Может быть использовано в дипломном проектировании при решении аналогичных задач.

Составитель, доц., канд. техн. наук

Рецензент, доц., канд. техн. наук

© Уфимский государственный нефтяной технический университет, 2010

Согласно действующим нормативным документам выбор конструкции и расчет параметров молниезащиты должен производиться на основе данных о защищаемом объекте (назначения, наличия взрыво - и пожароопасных зон, огнестойкости и др.) и ожидаемом количестве поражений молнией в год. Последнее определяется исходя из сведений об интенсивности грозовой деятельности и геометрических размеров защищаемого объекта.

1 Характеристика интенсивности грозовой деятельности и молниепоражаемости объекта

Интенсивность грозовой деятельности характеризуется средним числом грозовых часов (Пч) в году, определяемым по карте (рисунок 1).

Расчет ожидаемого количества N поражений молнией в год незащищенного объекта производится по формулам:

Для сосредоточенных зданий и сооружений (дымовые трубы, вышки, башни)

N = 9πh2n · 10-6;

Для зданий и сооружений прямоугольной формы

N = [(S+6h)(L+6h) – 7,7h2]n · 10-6,

где h – наибольшая высота здания или сооружения, м;

S, L – соответственно, ширина и длина здания или сооружения;

n – среднегодовое число ударов молнии в 1 км2 земной поверхности, определяемое по таблице 1.

Если здание имеет сложную конфигурацию, то при расчете за S и L принимают ширину и длину прямоугольника, в который вписывается план здания.

Таблица 1 – Зависимость среднегодового числа ударов молнии в 1 км2 земной поверхности от интенсивности грозовой деятельности

Интенсивность грозовой деятельности Пч, ч

Среднее число ударов молнии в год на 1 км2, n

Рисунок 1 – Карта среднегодовой продолжительности гроз в часах

2 Классификация зданий и сооружений

по устройству молниезащиты

Инструкция по проектированию и устройству молниезащиты , исходя из вероятности поражения защищаемого объекта молнией, масштаба возможных разрушений и ущерба, устанавливает три категории зданий и сооружений (I, II, III) и два типа (А и Б) зон защиты объектов от прямых ударов молнии. Зона защиты типа А обеспечивает перехват на пути к защищаемому объекту не менее 99,5% молний, а типа Б – не менее 95%.

К I категории относят здания и сооружения (или их части), в которых имеются взрывоопасные зоны классов В-I и В-II согласно Правилам устройства электроустановок (ПУЭ). В них хранятся или содержатся постоянно либо появляются во время производственного процесса смеси газов, паров или пыли горючих веществ с воздухом или иными окислителями, способные взорваться от электрической искры.

Ко II категории относят здания и сооружения (или их части), в которых имеются взрывоопасные зоны классов В-Iа, В-Iб, В-IIа согласно ПУЭ. В таких сооружениях опасные смеси появляются лишь при аварии или неисправностях в технологическом процессе. К этой же категории принадлежат наружные технологические установки и открытые склады, содержащие взрывоопасные газы и пары, горючие и легковоспламеняющиеся жидкости (газгольдеры, цистерны и резервуары, сливо-наливные эстакады и т. п.), относимые по ПУЭ к взрывоопасным зонам класса В-Iг.

1) здания и сооружения с пожароопасными зонами классов П-I, П-II, П-IIа согласно ПУЭ;

2) открытые склады твердых горючих веществ и наружные технологические установки, в которых применяют или хранят горючие жидкости с температурой вспышки паров выше 61ºС, относимые по ПУЭ к классу П-III;

3) здания и сооружения III, IV и V степени огнестойкости, в которых отсутствуют производства с зонами, относимыми по ПУЭ к классам пожаро - и взрывоопасным;

4) жилые и общественные здания , возвышающиеся на 25 м и более над средней высотой окружающих зданий в радиусе 400 м, а также отдельно стоящие здания высотой более 30 м, удаленные от других зданий на 400 м и более;

5) общественные здания III, IV и V степени огнестойкости следующего назначения: детские сады и ясли, школы и школы-интернаты, спальные корпуса и столовые санаториев, домов отдыха, лечебные корпуса больниц, клубы, кинотеатры;

6) здания и сооружения, являющиеся памятниками истории и куль - туры;

7) дымовые трубы предприятий и котельных, водонапорные и силосные башни, вышки различного назначения высотой более 15 м.

3 Выбор типа защиты

Различают два рода воздействия молнии: первичное, связанное с прямым ударом, и вторичное, вызванное электромагнитной и электростатической индукцией и заносом высоких потенциалов через металлические коммуникации в сооружения при разряде облака. В результате этих явлений могут возникать пожары, взрывы, разрушения конструкций, поражения людей, перенапряжение на проводах электрической сети.

Для защиты от прямых ударов молнии сооружаются молниеотводы, принимающие на себя ток молнии и отводящие его в землю. Зона защиты молниеотвода – это часть пространства, примыкающая к молниеотводу, внутри которого здание или сооружение защищено от прямых ударов молнии с определенной степенью надежности. Защитное действие молниеотвода основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. При этом, по мере углубления внутрь этого пространства степень надежности защиты возрастает.

Защита от электростатической индукции заключается в отводе индуцируемых статических зарядов в землю путем присоединения металлического оборудования, расположенного внутри и вне зданий, к специальному заземлителю или к защитному заземлению электроустановок; сопротивление заземлителя растеканию тока промышленной частоты должно быть не более 10 Ом.

Для защиты от электромагнитной индукции между трубопроводами и другими протяженными металлокоммуникациями в местах их сближения на расстояние 10 см и менее через каждые 20 м устанавливают (приваривают) металлические перемычки, по которым наведенные токи перетекают из одного контура в другой без образования электрических разрядов между ними.

Защита от заноса высоких потенциалов внутрь зданий обеспечивается отводом потенциалов в землю вне зданий путем присоединения металлокоммуникаций на входе в здания к заземлителям защиты от электростатической индукции или к защитным заземлениям электроустановок.

Здания и сооружения I категории должны быть обязательно защищены от прямых ударов молнии, от электрической и электромагнитной индукции, от заноса высокого потенциала через подземные и наземные коммуникации. Молниеотводы предусматриваются с зонами защиты типа А.

Здания и сооружения II категории должны быть защищены от прямых ударов молнии; вторичных ее воздействий и заноса высоких потенциалов по коммуникациям только в местностях со средней интенсивностью грозовой деятельности nч ≥10. Тип зоны защиты молниеотводов зависит от показателя N: тип А берется при N>1, тип Б – при N≤1.

Здания и сооружения III категории подлежат молниезащите в местностях с грозовой деятельностью 20 ч и более в год, зона защиты молниеотводов – типа Б, за исключением объектов, указанных в п. 1 и 3. В них выбор типа зоны зависит от ожидаемого числа поражений молнией: при 0,12 принимается тип А.

Все здания и сооружения III категории защищают от прямых ударов молнии и заноса высоких потенциалов через наземные металлические коммуникации. Наружные установки защищают только от прямых ударов молнии.

4 Конструкции молниеотводов

Молниеотвод состоит из молниеприемника, непосредственно воспринимающего удар молнии, токоотвода (спуска), соединяющего молниеприемник с заземлителем, заземлителя, через который ток молнии стекает в землю. Вертикальную конструкцию (столб или мачту) или часть сооружения, предназначенную для закрепления молниеприемника и токоотвода, называют опорой молниеотвода.

По типу молниеприемников молниеотводы делят на стержневые, тросовые и сеточные, укладываемые на защищаемое здание; по числу и общей зоне защиты – на одиночные, двойные и многократные. Кроме того, различают молниеотводы отдельно стоящие, изолированные и не изолированные от защищаемого здания.

Стержневые молниеотводы представляют собой вертикальные стержни или мачты, тросовые – горизонтальные стальные канаты и провода, закрепленные на двух и более опорах, по каждой из которых прокладывают токоотвод к отдельному заземлителю. У сеточных молниеотводов молниеприемником служит металлическая сетка, присоединяемая токоотводом к заземлителю. Чаще используют стержневые молниеотводы.

Для повышения безопасности людей и животных заземлители размещают в редко посещаемых местах (на газонах, в кустарниках) в удалении на 5 м и более от основных грунтовых проезжих и пешеходных дорог, располагают их под асфальтовыми покрытиями или устанавливают предупреждающие плакаты. Токоотводы размещают в недоступных местах.

5 Расчет и проектирование молниеотводов

При устройстве молниезащиты соблюдают следующие условия: соответствие типа молниезащиты характеру производственного процесса в здании или сооружении, возможность типизации конструктивных элементов молниезащиты, надежность действия всех элементов молниезащиты и их «равнопрочность», большой срок службы (10 лет и более), возможность применения недорогостоящих материалов и использование конструктивных элементов здания и сооружения, наглядность монтажа, предупредительные и воспрещающие знаки или ограждения, доступ ко всем элементам при контроле, восстановлении или ремонте.

Кроме того, при устройстве молниезащиты зданий и сооружений любой категории учитывают возможность экранирования их зонами защиты молниеотводов других близко расположенных зданий и сооружений. При этом максимально используют естественные молниеотводы (вытяжные трубы, водонапорные башни, дымовые трубы, линии электропередачи и другие возвышающиеся сооружения).

Ниже приведены методики расчета молниеотводов разных конструкций высотой до 150 м.

Одиночный стержневой молниеотвод . Зона его защиты представляет собой конус (рисунок 2), вершина которого находится на высоте h0

Для зоны типа А

h0 = 0,85h; R0 = (1,1 - 0,002h)h;

Rx = (1,1 - 0,002h)(h - hx/0,85);

Для зоны типа Б

h0 = 0,92h; R0 = 1,5h; Rx = 1,5(h - hx/0,92),

где Rx и hx определяют по закону подобия треугольников.

Для зоны типа Б высоту молниеотвода при известных величинах hx и Rx устанавливают по формуле:

h = (Rx + 1,63hx)/1,5.

Рисунок 2 – Зона защиты одиночного стержневого молниеотвода

1 – граница зоны защиты на уровне hx; 2 – то же на уровне земли

Двойной стержневой молниеотвод (рисунок 3). Торцевые части зоны защиты определяют как зоны одиночных стержневых молниеотводов. Значение h0, R0, Rx1 и Rx2 расчитывают по выше приведенным формулам для обоих типов зон защиты.

Внутренние области зон защиты имеют следующие габаритные размеры:

Зона типа А:

при L ≤ h hc = h0; Rc = R0; Rcx = Rx;

при h < L ≤ 2h hc = h0-(0,17 + 3×10-4h)(L - h);

при 2h < L ≤ 4h ;

;

;

Зона типа Б:

при L ≤ h hc = h0; Rcx = Rx; Rc = R0;

при h < L ≤ 6h, hc = h0 - 0,14(L - h);

Rc = R0; Rcx = R0(hc - hx)/ hc;

При больших расстояниях молниеотводы следует рассматривать как одиночные.

При известных hc, L и Rcx = 0 высоту молниеотвода для зоны типа Б определяют по формуле:

h = (hc + 0,14L)/1,06.


Рисунок 3 – Зона защиты двойного стержневого молниеотвода

1 – граница зоны защиты на уровне hx 1 ; 2 – то же на уровне hx 2 ,

3 – то же на уровне земли

Двойной стержневой молниеотвод разной высоты (рисунок 4). Торцевые части также представляют собой зоны защиты одиночных стержневых молниеотводов соответствующей высоты, а h01, h02, R01, R02, Rx1, Rx2 определяют как для одиночного молниеотвода обоих типов зон.

Rcx = R0(hc - hx)/hc;

Rc= (R01 + R02)/2;

hc = (hc1 + hc2)/2,

где hc1 и hc2 для обоих типов зон защиты вычисляют по формулам для двойного стержневого молниеотвода.

Рисунок 4 – Зона защиты одиночного стержневого молниеотвода

Для разновысокого двойного стерженового молниеотвода зона защиты типа А существует при L ≤ 4hmin, типа Б – при L ≤ 6hmin.

Одиночный тросовый молниеотвод . Зона его защиты приведена на рисунке 5, где h – расстояние по высоте до троса в точке наибольшего провеса.

С учетом стрелы провеса при известной высоте опор hоп и длине пролета а < 120 м высота до троса h = hоп - 2 м, а при а=120...150 h = hоп - 3 м.

Зоны защиты одиночных тросовых молниеотводов имеют следующие размеры.

Для зоны типа А:

h0 = 0,85h; R0 = (1,35 - 0,0025h)h;

Rx = (1,35 - 0,0025h)(h - hx/0,85).

Для типа Б:

h0 = 0,92h; R0 = 1,7h ; Rх = 1,7(h - hx/0,92).

Для зоны типа Б высота одиночного тросового молниеотвода при известных hx и Rx равна h = (Rx + 1,85hx)/1,7.

Рисунок 5 – Зона защиты одиночного тросового молниеотвода

1 – граница зоны защиты на уровне земли;

2 – граница зоны защиты на уровне hx

6 Пример расчета

Здание расположено в Республике Башкортостан , имеет размеры:

L = 27 м; S = 18 м; h = 6 м.

Расчеты ведем в следующем порядке.

1. Определяем по классификации ПУЭ класс взрывопожароопасной зоны для склада ЛКМ. ЛКМ обычно изготовляются на основе легковоспламеняющихся жидкостей и склад является взрывоопасной зоной. Однако ЛКМ поступают и хранятся на складе в герметичной таре. Образование взрывоопасных смесей в здании склада возможно в случае неисправной тары. Следовательно, склад ЛКМ по классификации ПУЭ относится к классу В-1а.

2. Определяем требуемую категорию устройства защиты склада ЛКМ от воздействия атмосферного электричества. Согласно п.2 здания и сооружения, в которых имеются взрывоопасные зоны класса В-1а, относятся ко II категории защиты и должны быть защищены от всех четырех опасных факторов атмосферного электричества.

3. Определяем требуемый тип защиты для склада ЛКМ.

По карте среднегодовой продолжительности гроз (рисунок 1) находим, что интенсивность грозовой деятельности на территории РБ составляет 40…60 ч в год. Согласно таблице 1 такой интенсивности соответствует среднегодовое число ударов молнии, приходящееся на 1 км2 площади, равное n = 4. Ожидаемое число поражений склада ЛКМ молнией в течение года при отсутствии молниеотвода определяется по формуле:

Подставляя известные данные, получаем:

Так как N<1, то принимаем зону защиты типа Б.

4. Выписываем геометрические размеры зоны защиты типа Б:

; rо = 1,5 h м ; rх = 1,5(h м - hх/0,92),

где hо – высота конуса зоны защиты; hм – высота стержневого молниеотвода; rх – радиус зоны защиты на уровне земли; rо – радиус зоны защиты на высоте защищаемого объекта; hх – высота защищаемого объекта.

5. Определяем радиус rо зоны защиты на высоте объекта, используя графический метод. Наносим в выбранном масштабе на лист бумаги план склада ЛКМ (вид сверху). Выбираем и наносим на схему точку установки молниеотвода (для объектов II категории расстояние между молниеотводом и защищаемым объектом не нормируется). Считая эту точку центром, описываем окружность такого радиуса, чтобы защищаемый объект (склад ЛКМ) вписался в нее. Снимаем со схемы значение радиуса rх; r = 27,5 м.

Рисунок 6 – К расчету высоты отдельно стоящего стержневого молниеотвода

1 – защищаемый объект; 2 – место установки молниеотвода

6. Определяем высоту молниеотвода:

h м = (r х + 1,63hх)/1,5; hм = 25 м

7. Определяем другие размеры зоны защиты:

ho = 22,8 м; rх = 37,3 м

8. Строим на схеме зону защиты (вид сбоку) и проверяем графически вписываемость объекта здания склада в зону защиты по высоте.

Библиографический список

Формально расчет предельно прост. Нужно знать площадь стягивания молний в здание S ст и их удельную плотность n M в месте его расположения. Произведение этих величин дает среднее ожидаемое число прямых ударов молнии в год:

N M = n M S ст (1)

В подавляющем большинстве практических ситуаций N M T мол ≈ 1/N M (2)

Во всех справочных материалах величина n M дается на 1 км 2 в год. Поэтому расчетное значение T мол оценивается в годах. Если, например, получено N M = 0,03, значит нужно в среднем ожидать один удар молнии за 1: 0,03 ≈ 33 года эксплуатации.

Понятие “в среднем” имеет здесь определяющее значение. Удар молнии в конкретное здание не обязательно произойдет через 33 года, До этого печального события, если не повезет, может пройти всего 1 - 2 года, а возможно и 100 лет (для особо везучих). Оцененный срок действительно средний . Он может быть подтвержден только многолетней статистикой наблюдений за большим числом однотипных зданий.

Таблица 1 заимствована из нормативного документа РД 34.21.122-87.

Таблица 1

Чтобы найти величину n M , нужно сначала обратиться к карте продолжительности гроз (она тоже есть в нормативе), снять с нее среднегодовую продолжительность гроз для места расположения рассматриваемого здания и потом по таблице 1 получить искомое n M . Надо ли говорить, насколько приблизительным будет результат расчета. Хотелось бы оперировать более строгими цифрами, полученными, например, системой дистанционной регистрации интенсивности грозовой деятельности с пространственным разрешением хотя бы 200 - 500 м. К сожалению, в отличие от многих технически развитых стран, на территории России такая система пока еще не развернута.

Понятно, что в сложившейся ситуации бессмысленно тратить большие усилия на строгое вычисление площади стягивания. По опыту наблюдений за сооружениями разной высоты принято, что она ограничивается линией, удаленной от внешнего периметра объекта на расстояние, равного 3-м его высотам. Построение легко выполнить. Потом остается вычислить ограниченную площадь (внутри синей линии на рис. 1) любым методом, в крайнем случае, - по клеточкам на миллиметровке. При большой неопределенности значения nM погрешность вычисления площади вряд ли будет сколько-нибудь значима.

Рисунок 1

Часто элементы здания имеют разную высоту. В этом случае радиус стягивания можно оценить по высоте наиболее высокого элемента. Результат ожидаемого числа ударов даст тогда оценку сверху. Для уточнения расчета нужно построить площади для всех различных по высоте строительных фрагментов и провести их общую внешнюю границу, как это показано на рис. 2. Ограниченная ею территория даст уточненную площадь стягивания для здания в целом.

Рисунок 2

Выполненные построения справедливы только для уединенного здания. Соседние строения или высокие деревья могут сильно изменить результат. Представьте себе район городской застройки или садовый кооператив, где дома стоят едва ли не вплотную. Их зоны стягивания молний частично накладываются друг на друга. В итоге ожидаемое число ударов в каждый из домов будет меньше. При сопоставимой высоте соседних зданий можно считать, что из наложенных друг на друга участков зон стягивания молнии распределятся поровну между домами. Если же высоты принципиально различны, а их зоны стягивания перекрываются значительной долей, приходится прибегать к компьютерному расчету. Так же нужно поступать и в случае, когда заказчик требует большой точности.

На практике необходимость уточненных расчетов возникает редко. Оценка числа ударов молнии для уединенно расположенного здания всегда можно рассматривать как предельную, а ошибка даже на уровне значащей цифры вполне допустима из-за грубой оценки плотности грозовых разрядов на территории России.

Правила устройства электроустановок (ПУЭ). Глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ (Начало)
Правила устройства электроустановок (ПУЭ). Глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ (Окончание)

ИЗОЛЯЦИЯ

ИЗОЛЯЦИЯ

2.5.57. На ВЛ 110 кВ и выше должны применяться только подвесные изоляторы; на ВЛ 35 кВ и ниже могут применяться подвесные и штыревые (в том числе опорно-стержневые) изоляторы.

2.5.58. Количество подвесных и тип штыревых изоляторов для ВЛ напряжением 6 кВ и выше выбираются из условия обеспечения надежной работы их в соответствии с "Инструкцией по проектированию изоляции в районах с чистой и загрязненной атмосферой".

Таблица 2.5.15. Минимальное мокроразрядное напряжение штыревых изоляторов

Номинальное напряжение ВЛ, кВ

Действующее мокроразрядное напряжение, кВ

Таблица 2.5.16. Расчетное коммутационное перенапряжение, принимаемое при выборе изоляции ВЛ

Номинальное напряжение ВЛ, кВ

Расчетная кратность коммутационных перенапряжений

Наиб. раб

Коммутационные перенапряжения, кВ

2.5.59. При применении подвесных изоляторов с отношением длины пути утечки к строительной высоте более 2,3 гирлянда, выбранная по рабочему напряжению, проверяется по условию воздействия коммутационных перенапряжений, расчетные значения которых приведены в табл. 2.5.17.

2.5.60. На переходных опорах высотой более 40 м количество подвесных изоляторов в гирлянде следует увеличивать по сравнению с принятыми на остальных опорах этой ВЛ на один изолятор на каждые 10 м высоты опоры сверх 40 м.

2.5.61. Коэффициенты запаса прочности изоляторов, т. е. отношение механической нагрузки, разрушающей штыревые и опорно-стержневые изоляторы, или электромеханической разрушающей нагрузки подвесных изоляторов к наибольшей нормативной нагрузке, действующей на изоляторы, должны составлять: при работе ВЛ в нормальном режиме - не менее 2,7; при среднегодовой температуре, отсутствии гололеда и ветра - не менее 5,0; в аварийном режиме для подвесных изоляторов ВЛ 500 кВ - не менее 2,0, а напряжением 330 кВ и ниже - не менее 1,8.

Нагрузки, действующие на изоляторы в аварийном режиме, определяются в соответствии с 2.5.89-2.5.91 и 2.5.93.

Таблица 2.5.17. Количество изоляторов в поддерживающих гирляндах ВЛ 110-500 кВ с металлическими и железобетонными опорами

Тип изолятора

Количество изоляторов, шт., при номинальном напряжении ВЛ, кВ

ПФ6-А (П-4,5)

ПФ6-Б (ПМ-4,5)

ПФ6-В (ПФЕ-4,5)

ПФ6-В (со Знаком качества)

ПФ20-А(ПФЕ-16)

ПС6-А (ПС-4,5)

ПС-11 (ПС-8,5)

ПС16-А(ЛС-16)

ПС16-Б (со Знаком качества)

ПС30-А (ЛС-30)

ЗАЩИТА ОТ ПЕРЕНАПРЯЖЕНИЙ, ЗАЗЕМЛЕНИЕ

2.5.62. ВЛ 110-500 кВ с металлическими и железобетонными опорами должны быть защищены от прямых ударов молнии тросами по всей длине линии.

Сооружение ВЛ 110-500 кВ без тросов допускается:

1) в районах с числом грозовых часов в году менее 20;

2) на отдельных участках ВЛ в районах с плохо проводящими грунтами ( Ом·м);

3) на участках трассы с расчетной толщиной стенки гололеда более 20 мм.

Усиления изоляции для случаев, приведенных в п. 1-3, не требуется.

При отсутствии данных о среднегодовой продолжительности гроз можно пользоваться картой районирования территории СССР по числу грозовых часов в году (рис. 2.5.13-2.5.15).

Рис. 2.5.13. Карта среднегодовой продолжительности гроз. Лист 1

Рис. 2.5.13. Карта среднегодовой продолжительности гроз. Лист 1

Рис. 2.5.14. Карта среднегодовой продолжительности гроз. Лист 2

Рис. 2.5.14. Карта среднегодовой продолжительности гроз. Лист 2

Рис. 2.5.15. Карта среднегодовой продолжительности гроз. Лист 3

Рис. 2.5.15. Карта среднегодовой продолжительности гроз. Лист 3

Рис. 2.5.16. Карта среднегодовой продолжительности гроз. Лист 4

Рис. 2.5.16. Карта среднегодовой продолжительности гроз. Лист 4

Защита подходов ВЛ к подстанциям должна выполняться в соответствии с требованиями гл. 4.2.

2.5.63. Для ВЛ до 35 кВ применения грозозащитных тросов не требуется. ВЛ 110 кВ на деревянных опорах, как правило, не должны защищаться тросами.

2.5.64. Единичные металлические и железобетонные опоры и другие места с ослабленной изоляцией на ВЛ 35 кВ с деревянными опорами должны защищаться трубчатыми разрядниками или, при наличии АПВ, защитными промежутками, а на ВЛ 110-220 кВ - трубчатыми разрядниками. При отсутствии трубчатых разрядников 110-220 кВ необходимых параметров допускается устанавливать вместо них защитные промежутки.

2.5.65. При выполнении защиты ВЛ от грозовых перенапряжений тросами необходимо руководствоваться следующим:

1. Одностоечные металлические и железобетонные опоры с одним тросом должны иметь угол защиты не более 30°, а с двумя тросами для целей грозозащиты - не более 20°.

2. На металлических опорах с горизонтальным расположением проводов и с двумя тросами угол защиты по отношению к внешним проводам должен быть не более 20°; в III, IV и особом районах по гололеду, а также в районах с частой пляской проводов допускается угол защиты до 30°.

3. На железобетонных и деревянных опорах портального типа угол защиты по отношению к крайним проводам допускается не более 30°.

4. При защите ВЛ двумя тросами расстояние между ними должно быть не более пятикратного расстояния по вертикали от тросов до проводов.

2.5.66. Расстояния по вертикали между тросом и проводом ВЛ в середине пролета, без учета отклонения их ветром, по условиям защиты от грозовых перенапряжений должны быть не менее приведенных в табл. 2.5.18 и не менее расстояния по вертикали между тросом и проводом на опоре.

При промежуточных значениях длин пролетов расстояния определяются интерполяцией.

2.5.67. Крепление тросов на всех опорах ВЛ 220-500 кВ должно быть выполнено при помощи изолятора, шунтированного искровым промежутком размером 40 мм.

На каждом анкерном участке длиной до 10 км тросы должны быть заземлены в одной точке путем устройства специальных перемычек на анкерной опоре. При большой длине анкерных пролетов количество точек заземления в пролете выбирается таким, чтобы при наибольшем значении продольной электродвижущей силы, наводимой в тросе при КЗ на ВЛ, не происходил пробой искровых промежутков на ВЛ.

В случае подвески тросов на нескольких изоляторах, например для плавки гололеда на тросах или для связи, размер искрового промежутка должен быть скоординирован с электрической прочностью гирлянды, на которой подвешен трос.

На подходах ВЛ 220-330 кВ к подстанциям на длине 2-3 км и на подходе ВЛ 500 кВ на длине не менее 5 км, если тросы не используются для емкостного отбора, плавки гололеда или связи, их следует заземлять на каждой опоре.

На ВЛ 150 кВ и ниже, если не предусмотрена плавка гололеда на тросе, изолированное крепление троса следует выполнять только на металлических и железобетонных анкерных опорах. Если такая плавка предусмотрена, то изолированное крепление троса должно быть выполнено по всей длине ВЛ.

Таблица 2.5.18. Наименьшее расстояние между тросом и проводом в середине пролета

Длина пролета, м

Наименьшее расстояние между тросом и проводом по вертикали, м

2.5.68. На ВЛ с деревянными опорами портального типа расстояние между фазами по дереву должно быть не менее 5 м для ВЛ напряжением 220 кВ, 4,5 м для ВЛ 150 кВ, 4 м для ВЛ 110 кВ, 3 м для ВЛ 35 кВ.

В отдельных случаях для ВЛ 110-220 кВ при наличии обоснований (небольшие токи КЗ, районы со слабой грозовой деятельностью, реконструкция и т.п.), допускается уменьшение указанных расстояний до значения, рекомендованного для ВЛ напряжением на одну ступень ниже.

На одностоечных деревянных опорах допускаются следующие расстояния между фазами по дереву: 2,5 м для ВЛ 35 кВ, 0,75 м для ВЛ 3-20 кВ при условии соблюдения расстояний в пролете согласно 2.5.53.
Применение металлических траверс на деревянных опорах не рекомендуется.

Таблица 2.5.19. Наименьшее допустимое изоляционное расстояние
по воздуху от токоведущих до заземленных частей ВЛ

Расчетное условие

Наименьшее изоляционное расстояние, см, при напряжении ВЛ, кВ

Грозовые перенапряжения для изоляторов:

штыревых

подвесных

Внутренние перенапряжения

Рабочее напряжение

Обеспечение безопасного подъема на опору

2.5.69. Кабельные вставки в ВЛ при их длине менее 1,5 км должны быть защищены по обоим концам кабеля от грозовых перенапряжений трубчатыми или вентильными разрядниками. Заземляющий зажим разрядника, металлические оболочки кабеля, а также корпус кабельной муфты должны быть соединены между собой по кратчайшему пути. Заземляющий зажим разрядника должен быть соединен с заземлителем отдельным спуском.

2.5.70. На переходах ВЛ через реки, ущелья и т. п. при высоте опор более 40 м и отсутствии на опорах троса должны устанавливаться трубчатые разрядники.

2.5.71. Для ВЛ, проходящих на высоте до 1000 м над уровнем моря, изоляционные расстояния по воздуху от проводов и арматуры, находящейся под напряжением, до заземленных частей опор должны быть не менее приведенных в табл. 2.5.19.

Изоляционные расстояния по воздуху между токоведущими частями и деревянной опорой, не имеющей заземляющих спусков, допускается уменьшать на 10%, за исключением расстояний, выбираемых по условию безопасного подъема на опору.

При прохождении ВЛ в горных районах наименьшие изоляционные расстояния по рабочему напряжению и по внутренним перенапряжениям должны быть увеличены по сравнению с приведенными в табл. 2.5.19 на 1% на каждые 100 м и выше 1000 м над уровнем моря.

2.5.72. Наименьшие расстояния на опоре между проводами ВЛ в местах их пересечения между собой при транспозиции, ответвлениях, переходе с одного расположения проводов на другое должны быть не менее приведенных в табл. 2.5.20.

2.5.73. Дополнительные требования к защите от грозовых перенапряжений ВЛ при пересечении их между собой и при пересечении ими различных сооружений приведены в 2.5.122, 2.5.129, 2.5.140 и 2.5.152.

Таблица 2.5.20. Наименьшее расстояние между
фазами ВЛ на опоре

Расчетное условие

Наименьшее расстояние между фазами, см,
при напряжении ВЛ, кВ

Грозовые перенапряжения

Внутренние перенапряжения

Рабочее напряжение

2.5.74. На ВЛ должны быть заземлены:

1) опоры, имеющие грозозащитный трос или другие устройства грозоза щиты;

2) железобетонные и металлические опоры ВЛ 3-35 кВ;

3) опоры, на которых установлены силовые или измерительные трансформаторы, разъединители, предохранители или другие аппараты;

4) металлические и железобетонные опоры ВЛ 110-500 кВ без тросов и других устройств грозозащиты, если это необходимо по условиям обеспечения надежной работы релейной защиты и автоматики.

2.5.75. Сопротивления заземляющих устройств опор, указанных в 2.5.74, п. 1, должны быть не более приведенных в табл. 2.5.21.

Сопротивления заземляющих устройств опор, указанных в 2.5.74, п. 2, должны быть: для ВЛ 3-20 кВ в населенной местности, а также для всех ВЛ 35 кВ - не более приведенных в табл. 2.5.21, для ВЛ 3-20 кВ в ненаселенной местности в грунтах с удельным сопротивлением до 100 Ом·м - не более 30 Ом, а в грунтах с выше 100 Ом·м - не более 0,3 Ом.

Сопротивления заземляющих устройств опор, указанных в 2.5.74, п. 3, для ВЛ 110 кВ и выше должны быть не более приведенных в табл. 2.5.22, а для ВЛ 3-35 кВ должны выбираться в соответствии с требованиями 1.7.57 и 1.7.58.

Сопротивления заземляющих устройств опор, указанных в 2.5.74, п. 4, определяются при проектировании ВЛ.

Для ВЛ, защищенных тросами, сопротивления заземляющих устройств, выполняемых по условиям грозозащиты, должны обеспечиваться при отсоединенном тросе, а по остальным условиям - при неотсоединенном тросе.

Для опор высотой более 40 м на участках ВЛ, защищенных тросами, сопротивления заземляющих устройств, должны быть в 2 раза меньше по сравнению с приведенными в табл. 2.5.21.

Сопротивления заземляющих устройств опор ВЛ должны обеспечиваться и измеряться при токах промышленной частоты в период их наибольших значений в летнее время. Допускается производить измерение в другие периоды с корректировкой результатов путем введения сезонного коэффициента, однако не следует производить измерение в период, когда на значение сопротивления заземляющих устройств оказывает существенное влияние промерзание грунта.

Таблица 2.5.21. Наибольшее сопротивление заземляющих устройств
опор ВЛ

Удельное эквивалентное сопротивление земли , Ом·м

Наибольшее сопротивление заземляющего устройства, Ом

Более 100 до 500

Более 500 до 1000

Более 1000 до 5000

Более 5000

2.5.76. При прохождении ВЛ 110 кВ и выше в местностях с глинистыми, суглинистыми, супесчаными и тому подобными грунтами с удельным сопротивлением 500 Ом·м следует использовать арматуру железобетонных фундаментов, опор и пасынков в качестве естественных заземлителей без дополнительной укладки или в сочетании с укладкой искусственных заземлителей. В грунтах с более высоким удельным сопротивлением естественная проводимость железобетонных фундаментов не должна учитываться, а требуемое значение сопротивления заземляющего устройства должно обеспечиваться только применением искусственных заземлителей.

Значения сопротивления заземляющих устройств опор ВЛ 3-35 кВ должны обеспечиваться применением искусственных заземлителей, а естественная проводимость фундаментов, подземных частей опор и пасынков (приставок) при расчетах не должна учитываться.

2.5.77. Железобетонные фундаменты опор ВЛ могут быть использованы в качестве естественных заземлителей (исключение см. в 2.5.76 и 2.5.142) при осуществлении металлической связи между анкерными болтами и арматурой фундамента.

Наличие битумной обмазки на железобетонных опорах и фундаментах, используемых в качестве естественных заземлителей, не должно учитываться.

Измерение проводимости железобетонных фундаментов, подземных частей опор и пасынков должно производиться не ранее чем через 2 месяца после их установки.

2.5.78. Для заземления железобетонных опор в качестве заземляющих проводников следует использовать все те элементы напряженной и ненапряженной продольной арматуры стоек, которые металлически соединены между собой и могут быть присоединены к заземлителю.

Стержни арматуры, используемые для заземления, должны быть проверены на термическую стойкость при прохождении токов КЗ. За время КЗ стержни должны нагреваться не более чем на 60°С.

Оттяжки железобетонных опор должны использоваться в качестве заземляющих проводников дополнительно к арматуре. При этом свободный конец тросов оттяжек должен присоединяться к рабочей части оттяжек при помощи специального зажима.

Тросы и детали крепления изоляторов к траверсе железобетонных опор должны быть металлически соединены с заземляющим спуском или заземленной арматурой.

2.5.79. Сечение каждого из заземляющих спусков на опоре ВЛ должно быть не менее 35 мм, а для однопроволочных спусков диаметр должен быть не менее 10 мм. Допускается применение стальных оцинкованных однопроволочных спусков диаметром не менее 6 мм.

2.5.80. Заземлители ВЛ, как правило, должны находиться на глубине не менее 0,5 м, а в пахотной земле - 1 м. В случае установки опор в скальных грунтах допускается прокладка лучевых заземлителей непосредственно под разборным слоем над скальными породами при толщине слоя не менее 0,1 м. При меньшей толщине этого слоя или его отсутствии рекомендуется прокладка заземлителей по поверхности скалы с заливкой их цементным раствором.

АРМАТУРА

2.5.81. Крепление проводов к подвесным изоляторам и крепление тросов следует производить при помощи поддерживающих или натяжных зажимов. Из натяжных зажимов предпочтение следует отдавать зажимам, не требующим разрезания провода. Крепление проводов к штыревым изоляторам следует производить проволочными вязками или специальными зажимами.

2.5.82. Поддерживающие зажимы для подвески проводов могут быть глухими или с заделкой ограниченной прочности. По условию надежности рекомендуется применение глухих зажимов. Подвеску грозозащитных тросов на опорах следует осуществлять только в глухих зажимах.

На больших переходах могут применяться многороликовые подвесы и специальные зажимы.

2.5.83. Соединения проводов и тросов следует производить при помощи соединительных зажимов, сварки, а также при помощи зажимов и сварки в совокупности. В одном пролете ВЛ допускается не более одного соединения на каждый провод или трос.

В пролетах, пересекающих инженерные сооружения, перечисленные в 2.5.118-2.5.160 и 2.6.163-2.5.167, одно соединение на провод (трос) допускается: при сталеалюминиевых проводах с отношением А: С4,29 - сечением 240 мм и более, с отношением А: С1,46 - любого сечения, при стальных тросах - сечением 120 мм и более, а также при расщеплении фазы на три сталеалюминиевых провода с отношением А: С4,29 - сечением 150 мм и более.

Минимальное расстояние от соединительного зажима до зажима с ограниченной прочностью заделки должно быть не менее 25 м.

2.5.84. Прочность заделки проводов и тросов в соединительных и натяжных зажимах должна составлять не менее 90% предела прочности провода или троса.

2.5.85. Коэффициенты запаса прочности линейной арматуры, т. е. отношение минимальной разрушающей нагрузки к нормативной нагрузке, воспринимаемой арматурой, должны быть не менее 2,5 при работе ВЛ в нормальном режиме и не менее 1,7 в аварийном режиме.

На линиях с механическим напряжением в проводах, превышающим 42% предела прочности при наибольшей нагрузке, до освоения арматуры новых типов допускается уменьшение коэффициентов запаса прочности линейной арматуры в нормальном режиме до 2,3.

Коэффициенты запаса прочности крюков и штырей должны быть не менее 2,0 в нормальном режиме и не менее 1,3 в аварийном режиме.

Нагрузки, действующие на арматуру, крюки и штыри в аварийном режиме, определяются в соответствии с 2.5.89-2.5.91 и 2.5.93.

ОПОРЫ

2.5.86. Опоры ВЛ выше 1 кВ разделяются на два основных вида: анкерные опоры, полностью воспринимающие тяжение проводов и тросов в смежных с опорой пролетах, и промежуточные, которые не воспринимают тяжение проводов или воспринимают его частично. На базе анкерных опор могут выполняться концевые и транспозиционные опоры. Промежуточные и анкерные опоры могут быть прямыми и угловыми.

В зависимости от количества подвешиваемых на них цепей опоры разделяются на одноцепные, двухцепные и т. д.

Промежуточные опоры могут быть гибкой и жесткой конструкции, опоры анкерного типа должны быть жесткими. Опоры анкерного типа могут быть нормальной и облегченной конструкции.

Опоры могут выполняться свободностоящими или с оттяжками.

Проектирование опор, фундаментов и оснований должно производиться с учетом указаний, приведенных в приложении к настоящей главе.

2.5.87. Опоры должны рассчитываться на нагрузки нормальных и аварийных режимов ВЛ.

Анкерные опоры должны быть рассчитаны на разность тяжений проводов и тросов, возникающую вследствие неравенства значений приведенных пролетов по обе стороны опоры. При этом условия для расчета разности тяжений устанавливаются при разработке конструкций опор.

Двухцепные опоры во всех режимах должны быть рассчитаны на условия, когда смонтирована только одна цепь.

Опоры должны быть проверены на условия их сборки и установки, а также на условия монтажа проводов и тросов.

2.5.88. Опоры на ВЛ должны рассчитываться на следующие условия нормальных режимов:

1. Провода и тросы не оборваны и свободны от гололеда, скоростной напор ветра , температура минус 5°С.

2. Провода и тросы не оборваны и покрыты гололедом, скоростной напор ветра 0,25, температура минус 5°С (см. также 2.5.34).

Анкерные опоры и промежуточные угловые опоры должны рассчитываться также на условия низшей температуры без ветра, если тяжение проводов или тросов в этом режиме больше, чем в режиме наибольших нагрузок.

Концевые опоры должны рассчитываться также на одностороннее тяжение всех проводов и тросов (провода и тросы со стороны подстанции или пролета, смежного с большим переходом, не смонтированы).

2.5.89. Промежуточные опоры ВЛ с поддерживающими гирляндами и глухими зажимами должны рассчитываться на условные горизонтальные статические нагрузки аварийных режимов.

Расчет производится при следующих условиях:

1. Оборваны провод или провода одной фазы (при любом числе проводов на опоре); тросы не оборваны.

2. Оборван один трос; провода не оборваны.

Условные нагрузки прилагаются в местах крепления того провода или троса, при обрыве которого усилия в рассчитываемых элементах опоры получаются наибольшими.

Нагрузки от проводов и тросов следует принимать по среднеэксплуатационным условиям (в режиме без гололеда и без ветра).

В расчетах опор ВЛ с нерасщепленными фазами условные нагрузки от провода принимаются:

А. Для свободностоящих металлических опор и опор из любого материала на оттяжках с проводами сечением до 185 мм 0,5 ; сечением 205 мм и более 0,4 ;

Б. Для железобетонных свободностоящих опор с проводами сечением до 185 мм 0,3 ; сечением 205 мм и более 0,25 .

В. Для деревянных свободностоящих опор с проводами сечением до 185 мм 0,25 ; сечением 205 мм и более 0,2 , где - наибольшее нормативное тяжение провода или проводов одной фазы.

Г. Для других опор (опор из новых материалов, металлических гибких опор и т. п.) - в зависимости от гибкости рассчитываемых опор в пределах, указанных в п. А - В.

В расчетах опор ВЛ до 330 кВ с расщепленными фазами нормативная нагрузка определяется путем умножения значений, указанных в п. А - В для нерасщепленных фаз, на дополнительные коэффициенты: 0,8 при расщеплении на два провода, 0,7 - на три провода и 0,6 - на четыре провода.

В расчетах опор ВЛ 500 кВ с расщепленными фазами нормативная условная нагрузка, прилагаемая в месте крепления одной фазы, принимается равной 0,15 , но не менее 18 кН.

При применении средств, ограничивающих передачу продольной нагрузки на промежуточную опору (зажимы с ограниченной прочностью заделки, подвеска на блоках, а также другие средства), расчет следует производить на нормативные нагрузки, возникающие при использовании этих средств, но не более условных нагрузок, принимаемых при подвеске проводов в глухих зажимах.

Условная горизонтальная нагрузка от троса принимается равной 0,5 .

Для гибких опор (железобетонных и деревянных опор без оттяжек) допускается определять нормативную нагрузку от обрыва троса с учетом гибкости опор.

В расчетах допускается учитывать поддерживающее действие необорванных проводов и тросов в режиме среднегодовой температуры без гололеда и ветра. При этом нормативные условные нагрузки следует принимать как для металлических свободностоящих опор и опор из любого материала на оттяжках, а механические напряжения, возникающие в поддерживающих проводах и тросах, не должны превышать 70% предела прочности.

2.5.90. Промежуточные опоры ВЛ с креплением проводов на штиревых изоляторах при помощи проволочной вязки должны быть рассчитаны в аварийном режиме с учетом гибкости опор на обрыв одного провода, дающего наибольшие усилия в элементах опоры. Условная нормативная горизонтальная нагрузка вдоль линии от тяжения оборванного провода при расчете стойки должна приниматься равной 0,5

Страница 2 из 7

2. Основные характеристики грозовой деятельности и разрядов молнии

2.1. Интенсивность грозовой деятельности

Формирование грозовой облачности и, следовательно, грозовая деятельность зависит от климатических условий и рельефа местности. Поэтому грозовая деятельность над различными участками земной поверхности неодинакова. Для расчета грозозащитных мероприятий необходимо знать конкретную величину, характеризующую грозовую деятельность в данной местности. Такой величиной является интенсивность грозовой деятельности, которую принято определять числом грозовых часов или грозовых дней в году, вычисляемым как среднеарифметическое значение за ряд лет наблюдений для определенного места земной поверхности.
Интенсивность грозовой деятельности в данном районе земной поверхности определяется также числом ударов молнии в год, приходящихся на 1 км 2 земной поверхности.
Среднее число поражений молнией 1 км 2 земной поверхности в год определяется в зависимости от среднегодовой продолжительности гроз и приведено в табл. 1.
Таблица 1. Среднее число поражений молнией

Рис. 1. Карта среднегодовой продолжительности гроз в грозо-часах на территории России, стран ближнего зарубежья и стран Балтии

На рисунке 1 приведена карта среднегодовой продолжительности гроз в грозо-часах на территории России, стран ближнего зарубежья и стран Балтии.
Ожидаемое количество поражений молнией в год зданий и сооружений высотой не более 60 м, не оборудованных молниезащитой, имеющих неизменную высоту (рис. 4а), определяется по формуле

где:
S - ширина защищаемого здания (сооружения), м; L - длина защищаемого здания (сооружения), м; hx - высота здания по его боковым сторонам, м;
п - среднее число поражений молнией 1 км 2 земной поверхности в год в районе строительства здания.
Формула приведена с учетом того, что число поражений молнией здания или сооружения пропорционально площади, занимаемой не только самим зданием или сооружением, но и суммой площадей проекций защитных зон, создаваемых гранями и углами кровли здания или сооружения. Если части здания имеют неодинаковую высоту (рис. 4б), то зона защиты, создаваемая высотной частью, может охватывать всю остальную часть здания. Если зона защиты высотной части не охватывает всего здания, необходимо учесть часть здания, находящуюся вне зоны защиты высотной части.

Рис. 4. Зона защиты, создаваемая сооружениями а - здания с одной высотой; б - здания, имеющие разные высоты.
Рекомендуемая формула позволяет произвести количественную оценку вероятности поражения молнией различных сооружений, расположенных в равнинной местности с достаточно однородными грунтовыми условиями.
Следует отметить, что значение параметра п, входящего в расчетную формулу, может в несколько раз отличаться от значений, приведенных выше. В горных районах большая часть разрядов молнии происходит между облаками, поэтому значение п может оказаться существенно меньше. Районы, где имеются слои почвы высокой проводимости, как показывают наблюдения, избирательно поражаются разрядами молнии, поэтому значение п в этих районах может оказаться существенно выше. Избирательно могут поражаться районы с плохо проводящими грунтами, в которых проложены протяженные металлические коммуникации (кабельные линии, металлические трубопроводы). Избирательно поражаются также возвышающиеся над поверхностью земли металлические предметы (вышки, дымовые трубы).

2.2. Основные параметры тока молнии

Ток, протекающий через пораженный молнией объект, быстро изменяется во времени. Примерная форма кривой тока молнии представлена на рис. 5. Часть кривой, на которой ток нарастает, именуется фронтом импульса тока молнии. Часть кривой, на которой ток спадает, именуется спадом импульса тока молнии.
Для равнинных районов наиболее вероятны токи молнии с амплитудой до 6104 А. Вероятность тока молнии (6-20)-104 А невелика, однако при проектировании молниезащиты ответственных объектов следует учитывать возможность появления таких токов. В горных районах амплитуда токов молнии примерно вдвое меньше, чем в равнинных районах.
Существенной характеристикой является крутизна фронта (скорость изменения) тока молнии, от которой зависит как индуктивное падение напряжения на протяженных проводниках (молниеотводах, токоотводах, заземлителях и т.п.), через которые протекает ток, так и э.д.с., обусловленные электромагнитным полем его.

Рис. 5. Примерная форма кривой тока молнии

2.3. Воздействия тока молнии

При разряде молнии в объект ток оказывает тепловые, механические и электромагнитные воздействия.
Тепловые воздействия тока молнии. Протекание тока молнии через сооружения связано с выделением тепла. При этом ток молнии может вызвать нагревание токоотвода до температуры плавления или даже испарения.
Сечение проводников должно быть выбрано с таким расчетом, чтобы была исключена опасность недопустимых перегревов.
Таблица 2.4.1. Рекомендуемые значения токоотводящих проводников

Оплавление металла в месте соприкосновения канала молнии может быть значительным, если молния попадает в острый шпиль. При контакте канала молнии с металлической плоскостью происходит оплавление на достаточно большой площади, численно равной в квадратных миллиметрах значению амплитуды тока в килоамперах.
Механические воздействия токов молнии. Механические усилия, возникающие в различных частях здания и сооружениях при прохождении по ним токов молнии, могут быть весьма значительными. Достаточно сказать, что при воздействии токов молнии деревянные конструкции могут быть полностью разрушены, а кирпичные трубы и иные надземные сооружения из камня и кирпича могут иметь значительные повреждения.
При ударе молнии в бетон образуется узкий канал разряда. Значительная энергия, выделяемая в канале разряда, может вызвать разрушение, которое приведет либо к снижению механической прочности бетона, либо к деформации конструкции.
При ударе молнии в железобетон возможно разрушение бетона с деформацией стальной арматуры.

2.4. Вторичные проявления ударов молнии

Под вторичным проявлением удара молнии обычно принято понимать те явления при разрядах молнии, которые сопровождаются появлением электродвижущих сил и разностей потенциалов на различных металлических конструкциях, трубопроводах и проводах (внутри помещений или вблизи них), не подвергшихся непосредственно прямому удару молнии. Вторичные проявления обычно разделяются на электромагнитную и электростатическую индукцию. Ко вторичным проявлениям молнии относится также появление разности потенциалов внутри зданий и сооружений вследствие заноса высоких потенциалов через подземные и наземные металлические коммуникации, трубопроводы, электрические кабели, подземные эстакады, воздушные линии связи и сигнализации, воздушные линии электропередачи, шинопроводы и т.п.).
Электромагнитная индукция. Разряд молнии сопровождается появлением в пространстве изменяющегося во времени магнитного поля. Магнитное поле индуктирует в контурах, образованных из различных протяженных металлических предметов (трубопроводов, электрических проводок и т.п.), электродвижущую силу, величина которой зависит от амплитуды и крутизны фронта тока молнии, размеров и конфигурации контура, в котором наводится э.д.с. В замкнутых контурах индуктированные э.д.с. вызывают появление электрических токов, нагревающих отдельные элементы контуров. Однако в силу их малой величины, токи, индуктированные э.д.с., могут образовываться внутри зданий и сооружений различными способами, например путем соединения в одну систему трубопроводов, металлоконструкций и т.д.
В незамкнутых контурах, в контурах, контакты которых недостаточно надежны в местах соединения или в местах сближения отдельных элементов контура друг с другом, возникающая э.д.с. электромагнитной индукции может вызвать искрение или сильное нагревание.
Электростатическая индукция. Под грозовым облаком в земле и во всех наземных объектах скапливаются электрические заряды, равные по величине и противоположные по знаку зарядам облака и зарядам, внедряемым в будущий канал молнии лидерными процессами.
Поскольку нарастание потенциалов облака происходит достаточно медленно, индуцированные заряды появляются даже на объектах, которые обладают хорошей изоляцией относительно земли (провода воздушных линий, металлические крыши деревянных зданий и т.д.).
Это объясняется тем, что всякая изоляция обладает некоторой утечкой, благодаря которой заряды, одноименные с зарядами облака, успевают стекать в землю. При этом поле зарядов облака и поле зарядов, индуктированных на объекте, обладающем некоторой утечкой, накладываются таким образом, что разность потенциалов между объектами и землей мала. Длительность грозового разряда, в результате которого нейтрализуется большая часть заряда облака и заряда, внедренного лидерными процессами, на несколько порядков меньше длительности формирования грозового облака и развития лидера и молнии. Индуктированные на объекте заряды из-за большого сопротивления утечки не успевают стечь в землю за время длительности разряда молнии. Поэтому между объектом и землей возникает разность потенциалов, обусловленная индуктированными на объекте зарядами, поле которых уже не компенсировано полем зарядов облака.
Разность потенциалов может появиться между металлической кровлей здания и водопроводными и канализационными трубами, электропроводками, находящимися в здании, и другими заземленными предметами.
Чем объект выше, тем больше потенциалы, индуктированные на нем, и тем больше должны быть безопасные расстояния между этим объектом и ближайшим заземленным предметом.
Основной мерой борьбы с появлением внутри здания или сооружения потенциалов, обусловленных электростатической индукцией, является заземление всех проводящих элементов в здании или сооружении.
Занос высоких потенциалов в здания и сооружения. Ко вторичным проявлениям молнии относится появление значительных напряжений внутри зданий или сооружений вследствие передачи высоких потенциалов через воздушные и подземные металлические коммуникации.
Занос высокого напряжения в здания и сооружения по этим коммуникациям может быть не только при наличии металлической связи коммуникаций с защищаемым объектом, но и при отсутствии ее. Например, если протяженные металлические коммуникации расположены в непосредственной близости от молниеотвода, значительное повышение потенциала на молниеотводе, возникающее при прямом ударе молнии, может вызвать перекрытие изоляции по воздуху с молниеотвода на части коммуникаций.
Соединение всех крупных частей здания между собой (выравнивание потенциала) ликвидирует опасность возникновения перекрытий.
Занос высоких потенциалов по внешним коммуникациям во взрывоопасные здания и сооружения недопустим. Для невзрывоопасных зданий и сооружений III категории занос высоких потенциалов представляет опасность для находящихся в них людей, а также в отдельных случаях может вызвать пожар из-за пробоя изоляции электропроводки. Поэтому в зависимости от назначения этих объектов различают меры защиты этих зданий и сооружений.